A virus-based single-enzyme nanoreactor

Article

Comellas Aragones, M., Engelkamp, H., Claessen, V.I., Sommerdijk, N.A.J.M., Rowan, A.E., Christianen, P.C.M., Maan, J.C., Verduin, B.J.M., Cornelissen, J.J.L.M. & Nolte, R.J.M. (2007). A virus-based single-enzyme nanoreactor. Nature Nanotechnology, 2(10), 635-639. In Scopus Cited 281 times.

Read more: DOI      Medialink/Full text

Abstract

 

Most enzyme studies are carried out in bulk aqueous solution, at the so-called ensemble level, but more recently studies have appeared in which enzyme activity is measured at the level of a single molecule, revealing previously unseen properties. To this end, enzymes have been chemically or physically anchored to a surface, which is often disadvantageous because it may present in a confined reaction space, which inspired us to develop a generic method to carry out single-enzyme experiments in the restricted spatial environment of a virus capsid. We report here the incorporation of individual horseradish peroxidase enzymes in the inner cavity of a virus, and describe single-molecule studies on their enzymatic behaviour. These show that the virus capsid is permeable for substrate and product and that this permeability can be altered by changing pH.