Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization

Article

Kotzsch, A., Gröger, P., Pawolski, D., Bomans, P.H.H., Sommerdijk, N.A.J.M., Schlierf, M. & Kröger, N. (2017). Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization. PLoS Biology, 15(1):65 In Scopus Cited 5 times.

Read more: DOI      Medialink/Full text

Abstract

 

Background: Biological mineral formation (biomineralization) proceeds in specialized compartments often bounded by a lipid bilayer membrane. Currently, the role of membranes in biomineralization is hardly understood. Results: Investigating biomineralization of SiO2 (silica) in diatoms we identified Silicanin-1 (Sin1) as a conserved diatom membrane protein present in silica deposition vesicles (SDVs) of Thalassiosira pseudonana. Fluorescence microscopy of GFP-tagged Sin1 enabled, for the first time, to follow the intracellular locations of a biomineralization protein during silica biogenesis in vivo. The analysis revealed incorporation of the N-terminal domain of Sin1 into the biosilica via association with the organic matrix inside the SDVs. In vitro experiments showed that the recombinant N-terminal domain of Sin1 undergoes pH-triggered assembly into large clusters, and promotes silica formation by synergistic interaction with long-chain polyamines. Conclusions: Sin1 is the first identified SDV transmembrane protein, and is highly conserved throughout the diatom realm, which suggests a fundamental role in the biomineralization of diatom silica. Through interaction with long-chain polyamines, Sin1 could serve as a molecular link by which the SDV membrane exerts control on the assembly of biosilica-forming organic matrices in the SDV lumen.