Jan ten Thije Boonkkamp
Department / Institute
Group

RESEARCH PROFILE
Jan ten Thije Boonkkamp is an Associate Professor in the Department of Mathematics and Computer Science at Eindhoven University of Technology (TU/e). His research interests include:
* Numerical analysis - numerical methods for partial differential equations, finite volume methods for conservation laws, complete flux schemes, hyperbolic systems, time integration methods, Monge-Ampère equation, ray tracing
* Applied sciences: computational fluid dynamics, combustion theory, plasma physics, semiconductor simulation, computational illumination optics
Jan operates two main research lines
* Develop mathematical models for illumination optics, both analytical and numerical. An optical system is formulated as an optimal transport problem, subject to energy conservation. This approach allows us to derive a nonlinear PDE defining one of the optical surfaces. Efficient numerical solution methods for this equation are developed.
* Develop novel flux approximation schemes for conservation laws.
Basic idea is to compute the numerical flux from a local boundary value problem. The resulting numerical solution features properties of the exact solution
If you look carefully, you can see PDEs everywhere.”
ACADEMIC BACKGROUND
Jan ten Thije Boonkkamp received his MSc from the Department of Applied Mathematics at the University of Twente in 1984. He then started working at the Centrum Wiskunde & Informatica, Amsterdam where he remained until 1988, when he joined Philips Research Laboratories in Eindhoven. In 1991, he joined TU/e. In January 2015, Jan was a Visiting Professor in the Department of Mathematics & Statistics, IIT Kanpur, India. Jan publishes regularly in leading journals, such as the Journal of Computational and Applied Mathematics, Journal of Computational Physics and Journal of Scientific Computing.
Recent Publications
-
Two-Dimensional Freeform Reflector Design with a Scattering Surface
arXiv (2022) -
Alternative computation of the Seidel aberration coefficients using the Lie algebraic method
Journal of the Optical Society of America A, Optics, Image Science and Vision (2022) -
Numerical methods for the hyperbolic Monge-Ampère equation based on the method of characteristics
Partial Differential Equations and Applications (2022) -
Reliability Investigation of BiCGStab and IDR Solvers for the Advection-Diffusion-Reaction Equation
Communications in Computational Physics (2022) -
Alternative computation of the Seidel aberration coefficients using the Lie algebraic method
(2022)
Ancillary Activities
No ancillary activities