Automated Analysis of Non-interference Security by Refinement

Thai Son Hoang ¹ Annabelle McIver ² Larissa Meinicke ² Anthony Sloane ² Enrico Susatyo ²

¹ Swiss Federal Institute of Technology Zürich (ETH Zürich), Switzerland
² Macquarie University, Sydney, Australia

21st June 2011, CryptoForma Workshop
(adapted from slides by Annabelle McIver)
Secure Refinement

- Specialisation of classical refinement;
- Preserves non-interference security properties;
- It is compositional;
- It supports hierarchical program development;
- Its semantics provides a link between “source code” and the “mathematics underlying secrecy”.
Secure Refinement-oriented Approach
A short history (1/2)

- Traditional refinement reduces non-determinism, preserving all “relevant properties”.
 \[P \cap Q \subseteq P \]

- Traditional formal approaches to security model a “secret” as a non-deterministic choice over its “type”.

- Refinement paradox:
 \[
 h :\in \{0, 1\} \quad \not\subseteq \quad h := 0
 \]
 \[
 h :\in \{0, 1\} \quad \not\subseteq_{\text{secure}} \quad h := 0
 \]

- Traditional refinement is defined relative to a flat state space.

- Secure refinement uses a structured state space.
A secret is an **undisclosed** choice over a set of possibilities.

A non-deterministic choice is a **disclosed** choice, with the selection made as a program is developed.

The two choices should be distinguished in the semantics.

- Undisclosed choice **cannot** (accidentally) be “refined away”,
- so that refinements preserve secrecy.
1. During program execution, after each “atomic step”:
 - can “look” at the visible variables
 - cannot “look” at the hidden variables

2. Can observe any branching.

(1) and (2) imply compositionality of refinement.

A qualitative approach: “run the program only once”.
Hidden/Visibles in the Programming Language

- v (of type \mathcal{V}) is visible, h (of type \mathcal{H}) is hidden.
- H (of type $\mathcal{P}(\mathcal{H})$) – the shadow – the set of possible values of h.
- Assume: $v, h \in \{0, 1\}$, initially H is $\{0, 1\}$.

Program (v', h', H')

Set hidden

$h := 0$

$\{(v, 0, \{0\})\}$

$h \in \{0, 1\}$

$\{(v, 0, \{0, 1\}), (v, 1, \{0, 1\})\}$

Set visible

$v := 0$

$\{(0, h, \{0, 1\})\}$

$v \in \{0, 1\}$

$\{(0, h, \{0, 1\}), (1, h, \{0, 1\})\}$

Swap hidden

$h \in \{0, 1\}; h := 1 - h$

$\{(v, 0, \{0, 1\}), (v, 1, \{0, 1\})\}$
In *secure refinement-oriented* framework:

- we do not say that “a program is secure”,
- we write a *specification* which “obviously” captures our requirements (both functional and security),
- specification summarises the *intentions* of the designer: inefficient or unimplementable “programs”.
- we use *refinement* to add detail.
- Result: avoid building insecurities into the system.
Event-B: modelling discrete transition systems using refinement.

Event-B is supported by the Rodin Platform.

A specialised refinement is implemented for the Rodin platform.

An extra variable H (the “Shadow”) is generated to keep track of the possible values of hidden variables h.

Extra refinement relations for shadow refinement.

Rodin generates and discharges many of the obligations related to shadow refinement.

Interactively prove the remaining obligations within Rodin.
Difficulty: it was awkward to generate and supply the invariants for the shadow H.

Solution: Implemented a “front-end” for inputting program directly, using Rodin as a “back-end” for verification.

The shadow invariants are generated in Rodin.
HID $E : X$

result: skip;

[=

VIS $v : X$
HID $h : X$
FUN $\oplus : X \times X \rightarrow X$

result: $v = h \oplus E$

variables: $E, \text{fresult}, H1$

result
when
$\text{fresult} = F$
then
$\text{fresult} := T$
end

invariants:
$E \in H1$
$\text{fresult} = F \Rightarrow H1 = X$
$\text{fresult} = T \Rightarrow (\forall vb \cdot vb \in H1 \Rightarrow vb \in X)$
Can We Automate These Proofs? (3/4)

HID E : X
result: skip;

VIS v : X
HID h : X
FUN ⊕ : X x X -> X
result: v = h ⊕ E

variables: E, fresult, H1

result
when fresult = F
then fresult := T
end

invariants:
E ∈ H1
fresult = F ⇒ H1 = X
fresult = T ⇒ (∀vb. vb ∈ H1 ⇒ vb ∈ X)
Can We Automate These Proofs? (3/4)

variables: E, $fresult$, $H1$

result: skip;

$[=\$

VIS $v : X$
HID $h : X$
FUN $\oplus : X \times X \to X$

result: $v = h \oplus E$

invariants:

$E \in H1$

$fresult = F \Rightarrow H1 = X$

$fresult = T \Rightarrow (\forall vb. vb \in H1 \Rightarrow vb \in X)$
variables: $E, v, h, \text{fresult}, H2$

result

when

\[\text{fresult} = F \]

then

\[\text{fresult} := T \]

\[v := h \oplus E \]

\[H2 := \{ vE \mapsto vh \in H2 \mid h \oplus E = vh \oplus vE \} \]

end

invariants:

\[E \mapsto h \in H2 \]
\[\text{fresult} = F \Rightarrow H2 = X \times X \]
\[\text{fresult} = T \Rightarrow (\forall vE \mapsto vh \in H2 \mid v = vh \oplus vE) \]
\[\forall vE, vE' \in H1 \Rightarrow (\exists vh, vE \oplus vh \in H2) \]
Can We Automate These Proofs? (4/4)

variables: \(E, \nu, h, \text{fresult}, H2 \)

\[
\begin{align*}
\text{result: } & \text{skip; } \\
\text{when } & f\text{result} = F \\
\text{then } & f\text{result} := T \\
\nu & := h \oplus E \\
H2 & := \{ vE \mapsto vh \in H2 \mid h \oplus E = vh \oplus vE \}
\end{align*}
\]

\textbf{invariants:}

\[
\begin{align*}
E & \mapsto h \in H2 \\
f\text{result} = F & \Rightarrow H2 = X \times X \\
f\text{result} = T & \Rightarrow (\forall vE \mapsto vh \in H2 \cdot \nu = vh \oplus vE) \\
\forall vE \cdot vE \in H1 & \Rightarrow (\exists vh \cdot vE \mapsto vh \in H2)
\end{align*}
\]
variables: \(E, v, h, fresult, H2 \)

result

when

\(fresult = F \)

then

\(fresult := T \)
\(v := h \oplus E \)
\(H2 := \{ vE \leftrightarrow vh \in H2 \mid h \oplus E = vh \oplus vE \} \)

end

invariants:

\(E \leftrightarrow h \in H2 \)
\(fresult = F \Rightarrow H2 = X \times X \)
\(fresult = T \Rightarrow (\forall vE \leftrightarrow vh \in H2 \cdot v = vh \oplus vE) \)
\(\forall vE \cdot vE \in H1 \Rightarrow (\exists vh \cdot vE \leftrightarrow vh \in H2) \)
variables: $E, v, h, \text{fresult}, H2$

result: skip;

\begin{align*}
\text{when} & \quad \text{fresult} = F \\
\text{then} & \quad \text{fresult} := T \\
& \quad v := h \oplus E \\
& \quad H2 := \{vE \leftrightarrow vh \in H2 \mid h \oplus E = vh \oplus vE\}
\end{align*}

end

invariants:
\begin{align*}
E & \leftrightarrow h \in H2 \\
\text{fresult} = F & \Rightarrow H2 = X \times X \\
\text{fresult} = T & \Rightarrow (\forall vE \leftrightarrow vh \in H2 \cdot v = vh \oplus vE) \\
\forall vE \cdot vE & \in H1 \Rightarrow (\exists vh \cdot vE \leftrightarrow vh \in H2)
\end{align*}
Conclusions and Future Work

- We shown how to automate Shadow refinement proofs using Event-B/Rodin.
- The proofs are valid for a restricted sub-sets of language of probabilistic model.
- Future work:
 - Better integration tool support.
 - Applications to other protocols.