Ron Peerlings
Department
Group

RESEARCH PROFILE
Ron Peerlings is an Associate Professor in the Mechanics of Materials group of the Department of Mechanical Engineering of Eindhoven University of Technology (TU/e). He is involved in teaching and research in the field of mechanics of materials. His current research interests include micromechanics, micro-plasticity, structure–property relations, homogenisation, multiscale modelling, damage, fracture and enriched continua, as well as the computational methods associated with them. Most of his work has a theoretical/modelling nature, but always motivated by an industrial problem and often supported by experiments. Material systems he works on are advanced high-strength steels, composites and fibrous networks such as textiles and paper.
The mechanical response of a material is often governed by one particular process in the material’s microstructure, at one particular spatial scale. Being able to identify this process and capture it in a model which is as simple as possible is extremely rewarding scientifically as well as industrially.”
ACADEMIC BACKGROUND
Ron obtained his PhD in 1999 from TU/e. His advisors were René de Borst and Marcel Brekelmans. His PhD thesis is entitled `Enhanced damage modelling for fracture and fatigue'. The project was aimed at developing mathematically consistent Continuum Damage models, which do not suffer from pathological localization and mesh sensitivity. Ron became an Assistant Professor at TU/e in 2000 and an Associate Professor in 2007. From November 1999 until May 2000 Ron worked together with Prof. Norman Fleck at the Engineering Department of the University of Cambridge on enriched effective relations for heterogeneous elastic materials.
Key Publications
-
Fracture in multi-phase materials: Why some microstructures are more critical than others
Engineering Fracture Mechanics (2017) -
Explaining irreversible hygroscopic strains in paper: a multi-scale modelling study on the role of fibre activation and micro-compressions
Mechanics of Materials (2015) -
A multiscale quasicontinuum method for dissipative lattice models and discrete networks
Journal of the Mechanics and Physics of Solids (2014) -
Mechanics of dislocation pile-ups : a unification of scaling regimes
Journal of the Mechanics and Physics of Solids (2014) -
Gradient enhanced damage for quasi-brittle materials
International Journal for Numerical Methods in Engineering (1996)
Current Educational Activities
Ancillary Activities
No ancillary activities