Research Lab

NanoLab@TU/e

The NanoLab@TU/e offers a unique combination of equipment for developing optical chips and other applications based on compound semiconductor technology.

Facility Sharing
Sharing possible

Optical chips for faster internet

Nothing travels faster than light; which is why fiber optic cables are increasingly being used to carry our internet traffic. But as the electronic processing that takes place in our computers relies on electrons, it is continually necessary to convert electrical signals into light signals, and vice versa. With optical chips, this conversion becomes redundant, leading the way for a faster, more energy-efficient internet. The NanoLab@TU/e offers all the equipment necessary to develop these chips and related applications. 

Global lead

Optical chips must be able to generate and manipulate light in all kinds of ways. This necessitates chips constructed from the right combination of semiconductor materials, and placed with the utmost precision in the correct structure. The research conducted by TU/e and various industrial partners is intended to maintain the lead in this field enjoyed by the Brainport Region. An endeavor in which the NanoLab@TU/e plays a vital role. 

image

Fundamental research

In addition, the laboratory offers countless possibilities for fundamental research in various fields, including nanowires, single-photon emitters, and the fabrication of ultrathin layers with state of the art atomic layer deposition equipment.  

Unique cleanroom

The cleanroom at the NanoLab@TU/e offers a combination of equipment that is available nowhere else in the academic world. Here, optical chips based on semiconductive indium phosphide can be fabricated, from substrate right through to the end product. An ASML DUV scanner makes, for example, prints on a 3-inch wafer (the InP substrate size) with extreme accuracy. The more precise the channels made in the chips for the light to pass along, the less light is lost.  

Crystal growth

Additionally, the NanoLab@TU/e has a state-of-the art epitaxy machines. This enables to grow the necessary layers, atomic layer by atomic layer, until the resulting material has the required composition and structure. This process is critical to the chip's performance. As well as its unique combination of equipment, the NanoLab@TU/e provides auxiliary staff. These are people with years of expertise in this specialist field. 

Open access

The NanoLab@TU/e is an open-access research laboratory, in which both TU/e and other research centers and industrial parties conduct research. This approach ensures that insights and understanding acquired through fundamental research quickly find their way into industry. For more information, interested parties should contact Huub Ambrosius. 

Visit our other state-of-the-art labs and facilities

Center for Multiscale Electron Microscopy

The CMEM offers unique facilities for the study of soft materials and uses the knowledge gained to...

Center for Wireless Technology

The CWTe facilitates research on wireless systems and antennas, raising the Internet of Things to a...

Darcy Lab

The Darcy Lab offers unique MRI facilities specially equipped for researching the properties of...

Equipment & Prototype Center

The  Equipment & Prototype Center (EPC) makes custom experimental setups and prototypes for various...

Future Fuels Lab

In the Future Fuels Lab scientists are researching green fuels and cleaner combustion methods for...

High Capacity Optical Transmission Lab

The High Capacity Optical Transmission Lab facilitates research on innovative optical fibers and signal...

Institute for Complex Molecular Systems Laboratory

ICMS/Lab facilitates the development and characterization of innovative materials from a molecular...

Laboratory for Cell & Tissue Engineering

The Laboratory for Cell & Tissue Engineering facilitates culturing of autologous tissues across the...

Microfab/Lab

The Microfab/Lab facilitates the development of new micromanufacturing technologies for use in life...

Multiscale Lab

The Multiscale Lab facilitates research on the deformation and failure behavior of composite materials....

NanoAccess

NanoAccess makes it possible to produce, process and analyze innovative materials with nanometer...