Research project

Fundamentals of the Nonlinear Optical Channel

The FUN-NOTCH project copes foundational questions around the emerging phenomena of transceivers operated near the nonlinear regime of fibers. We aim at approaching theoretical mechanisms to optimize the current technologies, and we expect this will positively contribute to extending the capacity crunch in optical fiber communications.

Fibre optics are critical infrastructure for society because they carry nearly all the global Internet traffic. For a long time, optical fibre systems were thought to have infinite information-carrying capabilities. With current traffic demands growing by a factor between 10 and 100 every decade, however, this is no longer the case. In fact, it is currently unknown if the installed optical infrastructure will manage to cope with these demands in the future, or if we will face the so-called “capacity crunch”.

To satisfy traffic demands, transceivers are being operated near the nonlinear regime of the fibres. In this regime, a power-dependent nonlinear phenomenon known as the Kerr effect becomes the key impairment that limits the information-carrying capability of optical fibres. The intrinsic nonlinear nature of these fibres makes the analysis very difficult and has led to a series of unanswered fundamental questions about data transmission in nonlinear optical fibres, and nonlinear media in general. For example, the maximum amount of information that optical fibres can carry in the highly nonlinear regime is still unknown, and the design of transceivers well-suited for this regime is also completely unexplored. These fundamental questions are the key objective of this project which will ultimately give an answer to the capacity crunch question.

Participants

Fibre optics are critical infrastructure for society because they carry nearly all the global Internet traffic. For a long time, optical fibre systems were thought to have infinite information-carrying capabilities. With current traffic demands growing by a factor between 10 and 100 every decade, however, this is no longer the case. In fact, it is currently unknown if the installed optical infrastructure will manage to cope with these demands in the future, or if we will face the so-called “capacity crunch”.

To satisfy traffic demands, transceivers are being operated near the nonlinear regime of the fibres. In this regime, a power-dependent nonlinear phenomenon known as the Kerr effect becomes the key impairment that limits the information-carrying capability of optical fibres. The intrinsic nonlinear nature of these fibres makes the analysis very difficult and has led to a series of unanswered fundamental questions about data transmission in nonlinear optical fibres, and nonlinear media in general. For example, the maximum amount of information that optical fibres can carry in the highly nonlinear regime is still unknown, and the design of transceivers well-suited for this regime is also completely unexplored. These fundamental questions are the key objective of this project which will ultimately give an answer to the capacity crunch question.

Our Partners

Researchers involved in this project

Project description

To satisfy traffic demands, transceivers are being operated near the nonlinear regime of the fibres. In this regime, a power-dependent nonlinear phenomenon known as the Kerr effect becomes the key impairment that limits the information-carrying capability of optical fibres. The intrinsic nonlinear nature of these fibres makes the analysis very difficult and has led to a series of unanswered fundamental questions about data transmission in nonlinear optical fibres, and nonlinear media in general. For example, the maximum amount of information that optical fibres can carry in the highly nonlinear regime is still unknown, and the design of transceivers well-suited for this regime is also completely unexplored. These fundamental questions are the key objective of this project which will ultimately give an answer to the capacity crunch question.

Research Output

If you are interested in learning more about this project, an overview of publications can be found here

 

Grant

FUN-NOTCH is financed by the European Research Council (grant 757791), under the call ERC-2017-STG.